M1. Structure and hardness

M1	
Q of L <u>both</u> macromolecular/giant atomic/giant covalent/giant molecular;	1
M2 C atoms in diamond joined to 4 other C atoms / diagram with min 5 C atoms i.e. shows tetrahedral shape / coordination number = 4;	1
M3 C atoms in graphite joined to 3 other C atoms diagram with clear extended hexagonal plane/pattern i.e. shows trigonal planar shape / coordination number = 3;	1
M4	1
diamond hard / crystal strong; (not diamond stronger than graphite)	1
M5 because of 3-D structure / rigid structure / not layered;	1
M6 graphite (soft) as layer can slide over each other;	1
M7 Q of L as only (weak) van der Waals' forces between layers;	1
Melting point (for either allotrope)	
M8 covalent bonds must be broken / overcome;	1
M9 which are strong / many / hard to break; <i>(M9 tied to M8)</i>	1
Other difference	
M10 diamond is non-conductor of electricity, graphite is conductor <i>OR</i> appropriate difference in appearance;	1

[9]

M3. (a) (i) positive ions (1) (attract) delocalised electrons (1) (or sea of or free or mobile) (1) Confusion with - ve ions or ionic lattice C.E. = 0

> (ii) more protons (1) (or Mg²⁺ more charge than Na⁺) attracts <u>delocalised</u> (or bonding) electrons more strongly (1) Delocalised: can be brought forward from (a) (i)

OR more delocalised electrons (1) Attacks positive ions more (1) <u>Metallic</u> bonding is strong<u>er</u> scores one mark, only given if no other marks awarded

- (b) macromolecular (1) (or giant molecule etc) covalent (1) <u>strong</u> covalent <u>bonds</u> (1) or bonds require much energy to break
- (c) delocalised (*OR free or sea of or mobile*) electrons (1)
- (d) Planes (1) weak (bonds) forces between planes (1)

or v.dw forces between planes

[10]

4

3

1

2

M4.

(a) Force 1: Van der Waals' (1)

Force 2: dipole - dipole (1)

Force 3: hydrogen bonding (1) OR London, Dispersion, temporary dipole

3

4

(b) (i) covalent <u>between atoms</u> (1) OR within molecule

Van der Waals' between molecules (1)

- (ii) molecular (1)
- Bonds (or forces) between molecules must be broken or loosened (1)
 OR V.dW forces
 OR intermolecular forces
 Mention of ions CE=0

(c) (i) H-Bonding in HF (1)

(dipole-) dipole in HCl (1) OR V.dW

H-bonding is stronger than dipole-dipole or V.dW (1) OR H-bonding is a strongest intermolecular force for 3rd mark

- (ii) HI bigger molecule than HCI (1)
 OR Heavier, more e's, more electron shells, bigger M, more polarisable
 - Therefore the forces between HI molecules are stronger (1) QL mark (Look for unambiguous statements using correct terminology)

(d)	(i)	ionic (1)	
		Strong forces between ions (1) OR lots of energy required to break bonds	
	(ii)	All bonds must be broken (1) <i>mention of molecules etc CE=0</i>	3
(e) macromolecular (1) OR giant molecule / lattice or correct diagram			
	Str	ong covalent bonds (1) OR lots of energy required to break bonds	2

[17]

M5.	QoL	5	Both covalent ed statement)	1		
		Structure [trea	lodine = molecular /l₂ (stated or in diagram) t incorrect diagram as contradiction]	1		
	Diamond = giant molecular/macromolecular/giant covalent / giant atomic (stated only)					
	Reference to van der Waals' /dipole-dipole = contradiction					
	QoL	lodine dipole	Weak van der Waals' forces / induced dipole-induced	1		
	Diamond Covalent bonds would need to be broken					
	Diamond Covalent bonds would need to be <u>broken</u>					
	Many / s	strong covaler <i>Tied to M</i>	nt bonds OR much energy needed 5 or near miss			
	[If ionic/metallic structure suggested then CE for that substance]					
		[lf hy	drogen bonding suggested, for I_2 lose M2 & M4; for			

M7. (a) Hydrogen bonding (full name) 1 Diagram shows at least one ⁵⁺H and at least one ⁵⁻F (If full charges shown, M2 = 0) 1 3 lone pairs shown on at least one fluorine atom H-bond indicated, between H and a lone pair on F $\delta^+ \delta^- O \qquad \delta^+ \delta^- O \\ H^- F \bigcirc \cdots H^- F \bigcirc$ \bigcirc ()(If atoms not identified, zero for diag) ('FI' for fluorine - mark to Max 2) (Max 1 if only one HF molecule shown, or HCl shown) 1 Dipole results from electronegativity difference or values quoted ('difference' may be inferred) (Allow explanation – e.g. F attracts bonding electrons more strongly than H) 1 QoL Fluorine more/very electronegative or iodine less electronegative or electronegativity difference too small in HI Comparison required, may be implied. 1 HI dipole weaker or bonding e- more equally shared - wtte 1

(b) NaCl is <u>ionic</u> (lattice)

[6]

1

(Treat atoms/molecules as a contradiction) (Accept 'cubic lattice')	1
Diamond is macromolecular/giant covalent/giant atomic/giant molecular	
(NOT molecular or tetrahedral)	
(Ionic/van der Waals' = CE = 0)	
	1
(Many) covalent/C-C bonds need to be broken / overcome	
(NOT just 'weakened' etc.)	
('Covalent' may be inferred from diagram)	
(Treat diagram of graphite (without one of diamond) as a contradiction – lose M2 but allow M3/M4])	
	2
Which takes much energy or covalent bonds are strong	
(References to van Der Waals' bonds breaking lose M3/M4)	1

[11]